Fill Binary Matrix with Alternating Rectangles of 0 and 1

Given a M x N binary matrix, fill it with alternating rectangles of 0 and 1.

For example,

Input: 10 x 8 matrix

Output:

1   1   1   1   1   1   1   1
1   0   0   0   0   0   0   1
1   0   1   1   1   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   1   1   1   0   1
1   0   0   0   0   0   0   1
1   1   1   1   1   1   1   1

The idea is to fill the matrix by following the spiral order. All elements involved in each alternating run in spiral order are filled by either 0 or 1 based on input from last run. To maintain the spiral order four loops are used, each for top, right, bottom and left corner of the matrix.

C++

Output:

1   1   1   1   1   1   1   1
1   0   0   0   0   0   0   1
1   0   1   1   1   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   1   1   1   0   1
1   0   0   0   0   0   0   1
1   1   1   1   1   1   1   1

Java

Output:

[1, 1, 1, 1, 1, 1, 1, 1]
[1, 0, 0, 0, 0, 0, 0, 1]
[1, 0, 1, 1, 1, 1, 0, 1]
[1, 0, 1, 0, 0, 1, 0, 1]
[1, 0, 1, 0, 0, 1, 0, 1]
[1, 0, 1, 0, 0, 1, 0, 1]
[1, 0, 1, 0, 0, 1, 0, 1]
[1, 0, 1, 1, 1, 1, 0, 1]
[1, 0, 0, 0, 0, 0, 0, 1]
[1, 1, 1, 1, 1, 1, 1, 1]

Another approach:

A M x N matrix has min(ceil(M/2), ceil(N/2)) rectangular cycles. A cycle is formed by ith row, (N-i+1)th column, (M-i+1)th row and ith column where i varies from 1 to min(ceil(M/2), ceil(N/2)). The idea is for each rectangular cycle, we associate a value to it. For outer cycle, the value will be 0, for second cycle, the value will be 1 and third cycle will have value 2 and so on.. Below figure shows 4 cycles in a 10 x 8 matrix marked by value 0 – 3.

0   0   0   0   0   0   0   0
0   1   1   1   1   1   1   0
0   1   2   2   2   2   1   0
0   1   2   3   3   2   1   0
0   1   2   3   3   2   1   0
0   1   2   3   3   2   1   0
0   1   2   3   3   2   1   0
0   1   2   2   2   2   1   0
0   1   1   1   1   1   1   0
0   0   0   0   0   0   0   0

Now depending upon whether the assigned value is odd or even for a matrix cell, we assign 0 or 1 to the output matrix.

C++

Output:

1   1   1   1   1   1   1   1
1   0   0   0   0   0   0   1
1   0   1   1   1   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   0   0   1   0   1
1   0   1   1   1   1   0   1
1   0   0   0   0   0   0   1
1   1   1   1   1   1   1   1

Java

Output:

[1, 1, 1, 1, 1, 1, 1, 1]
[1, 0, 0, 0, 0, 0, 0, 1]
[1, 0, 1, 1, 1, 1, 0, 1]
[1, 0, 1, 0, 0, 1, 0, 1]
[1, 0, 1, 0, 0, 1, 0, 1]
[1, 0, 1, 0, 0, 1, 0, 1]
[1, 0, 1, 0, 0, 1, 0, 1]
[1, 0, 1, 1, 1, 1, 0, 1]
[1, 0, 0, 0, 0, 0, 0, 1]
[1, 1, 1, 1, 1, 1, 1, 1]

Time complexity of above solution is O(M*N).
Auxiliary space used by the program is O(1).

(1 votes, average: 5.00 out of 5)

Please use our online compiler to post code in comments. To contribute, get in touch with us.
Like us? Please spread the word and help us grow. Happy coding   🙂

Subscribe
Notify of
Guest

nice..

Guest

public class FillMatrix {

public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
sc.close();
int[][] matrix=new int[n][n];

for(int j=0;j<n;j++)
{

{
matrix[0][j]=1;
}

}

for(int i=1;i<n/2;i++){
for(int j=0;j<n;j++)
{
int level = i;
if (j =n-level){
matrix[i][j] = matrix[level – 1][j];
}
else {
if (matrix[level-1][j] == 0) {
matrix[i][j] = 1;
} else {
matrix[i][j] = 0;
}
}
}
}

for(int i=0;i<n/2;i++)
{
for(int j=0;j=0;i–)
{
for(int j=0;j<n;j++)
{
System.out.print(matrix[i][j]+" ");
}
System.out.println();
}

}

}